Instabilities in reactive sputtering of ZnO:Al and reliable texture-etching solution for light trapping in silicon thin film solar cells
نویسندگان
چکیده
Texture etched zinc oxide is often used as transparent front contact for silicon thin film solar cells. Reactive sputtering is a potentially low-cost process. However, process stability, film uniformity, and reproducibility are challenges to be solved. Oscillations of the control signal and subsequent reaction of the plasma emission control with moving substrates from rotatable metallic targets cause fluctuations of aluminum doped zinc oxide (ZnO:Al) properties. Solutions to overcome such variations during the reactive sputtering process are discussed. However, effects on film properties, especially on etching behavior, cannot be totally removed. To achieve good light scattering properties for solar cell application ZnO:Al films are usually etched in dilute hydrochloric acid. An etch process based on hydrofluoric acid has been developed to tune the surface texture for a given ZnO:Al material. One feature of this process is the relaxed requirement on ZnO:Al film properties as the reactively sputtered ZnO:Al films do not necessarily possess optimized film structure for the HCl etch. Solar cells with optimized ZnO:Al front contacts achieved conversion efficiency well above 11 %.
منابع مشابه
Improving the optical properties of thin film plasmonic solar cells of InP absorber layer using nanowires
In this paper, a thin-film InP-based solar cell designed and simulated. The proposed InP solar cell has a periodic array of plasmonic back-reflector, which consists of a silver layer and two silver nanowires. The indium tin oxide (ITO) layer also utilized as an anti-reflection coating (ARC) layer on top. The design creates a light-trapping structure by using a plasmonic back-reflector and an an...
متن کاملChemical Etching of Zinc Oxide for Thin-Film Silicon Solar Cells
Chemical etching is widely applied to texture the surface of sputter-deposited zinc oxide for light scattering in thin-film silicon solar cells. Based on experimental findings from the literature and our own results we propose a model that explains the etching behavior of ZnO depending on the structural material properties and etching agent. All grain boundaries are prone to be etched to a cert...
متن کاملOptimization of Chemical Texturing of Silicon Wafers Using Different Concentrations of Sodium Hydroxide in Etching Solution
In this paper, the morphology of chemically etched silicon with various concentration is reported. The surface of Silicon (100) has pyramidal structures which can be used for anti-reflection applications in solar cells. Pyramidal structures can capture incident sun light therefore can enhance the efficiency of silicon solar cells. The structure of silicon pyramid was studied using scanni...
متن کاملIntroducing nanostructure patterns for performance enhancement in PbS colloidal quantum dot solar cells
With attention to the thin film structure of colloidal quantum dot solar cells, in this paper in order to improvement of active layer absorption of them, we have proposed the use of nanostructure pattern for enhancement of their performance. For this purpose we have presented suitable nano hemisphare patterns in colloidal quantum dot solar cells for light trapping in absorption layer. Then with...
متن کاملEfficient light trapping in inverted nanopyramid thin crystalline silicon membranes for solar cell applications.
Thin-film crystalline silicon (c-Si) solar cells with light-trapping structures can enhance light absorption within the semiconductor absorber layer and reduce material usage. Here we demonstrate that an inverted nanopyramid light-trapping scheme for c-Si thin films, fabricated at wafer scale via a low-cost wet etching process, significantly enhances absorption within the c-Si layer. A broadban...
متن کامل